

Dr. Thanin Asawavichienjinda, M.D.

Myasthenia Gravis

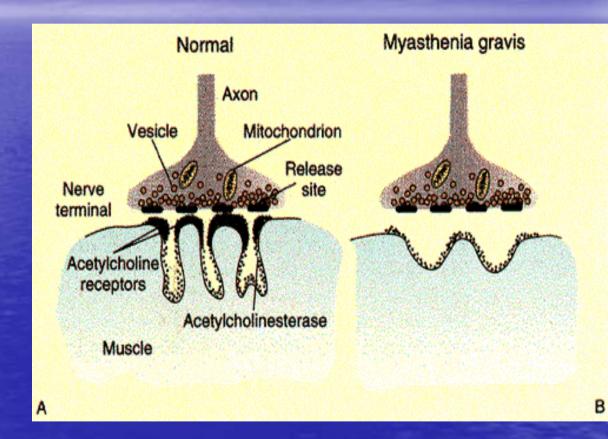
- A neuromuscular disorder characterized by weakness and fatigability of skeletal muscles
- The underlying defect: A decrease in the number of available acetylcholine receptors (AChRs) at neuromuscular junctions due to an antibody-mediated autoimmune attack.
- Preferable name: Autoimmune myasthenia
- Treatment now available for MG is highly effective, although a specific cure has remained elusive

Myasthenia Gravis: Epidemiology

- In the USA, the prevalence is 14.2 cases/1 million people
- · Appear at any age
- In women, the onset between 20 and 40 years of age
- Among men, at 40-60
- Overall, women are affected more frequently than men, in a ratio of approximately 3:2.
- Familial occurrence is rare

Myasthenia Gravis: Epidemiology

- Annual incidence: 0.25-2/100,000
- Spontaneous remission: 20%
- Without treatment, 20-30% die in 10 years
- MG is a heterogeneous disorder
 - 90% no specific cause
 - Genetic predisposing factor: HLA association; HLA-BW46 in chinese ocular MG
 - Thymic tumor: 10%


Myasthenia Gravis: Pathophysiology

- Autoimmune response mediated by specific anti-AChR antibodies
- Pathogenic antibodies are IgG and are T cell dependent, Sensitized T-helper cells
- Autoimmune response, the thymus appears to play a role
- 75%: thymus abnormal
 - 65%: hyperplasia
 - 10%: thymoma, rarely in children; often (20%) in patients aged 30-40 years

NEJM 1994; Neurologic clinics 1994; BJA 2002; JOAO 2004

Myasthenia Gravis: Pathophysiology

- Postsynaptic nicotinic acetylcholine receptor: reduce the number of functional receptors
 - loss of structural integrity of receptors: by Ab and complement
 - Morphologic changes
 of simplification of
 the partern of
 postsynaptic
 membrane folding;
 - An increased gap between the nerve terminal and the post synaptic muscle membrane
 - Blockade
 - ↑ Turnover of AchRs: Accelerated degradation of acetylcholine receptors

NEJM 1994, 1997; Neurologic clinics 1997; BJA 2002; JOAO 2004

Myasthenia Gravis: Pathophysiology

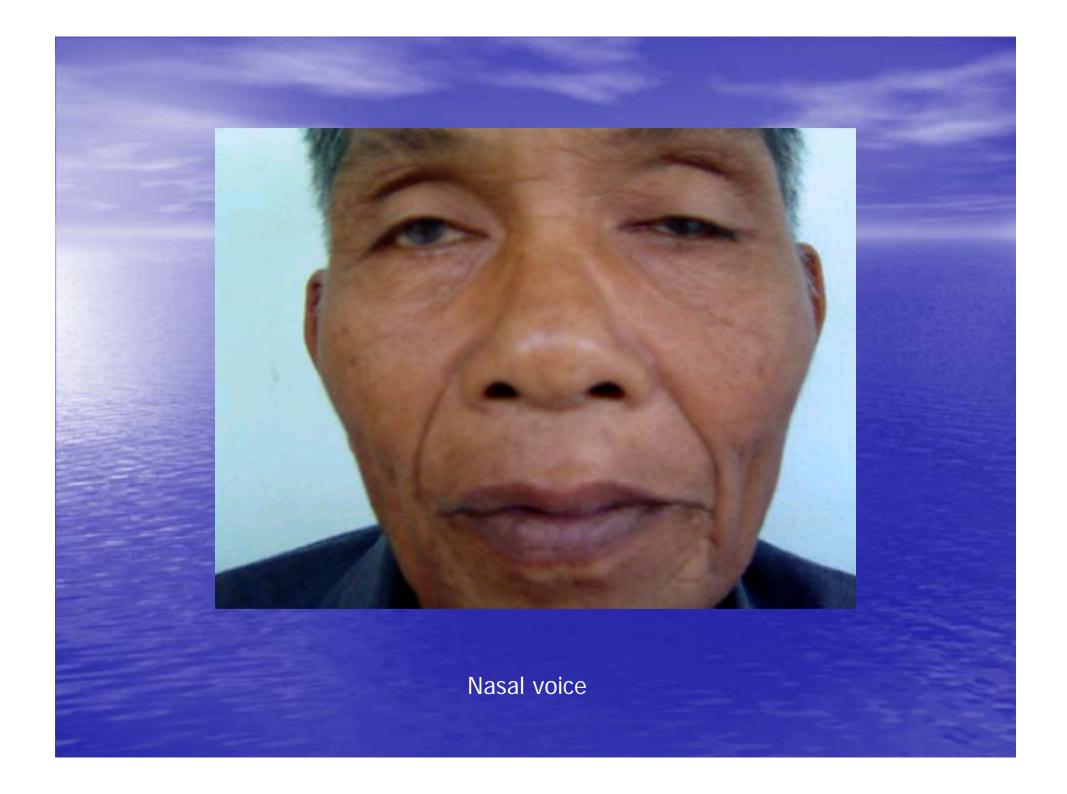
- · Reduced AchR density
 - results in end-plate potentials of diminished amplitude which fail to trigger action potentials in some fibers causing a failure in initiation of muscle fibre contraction - power of the whole muscle is reduced
- The amount of ACh released per impulse normally declines on repeated activity (termed presynaptic rundown)

NEJM 1994; BJA 2002

- Fluctuating weakness of voluntary muscles (fatigability)
 - Worsen after exertion and improve with rest
- -No abnormality of cognition, sensory function, or autonomic function

- Initial symptoms involve the ocular muscles in 60%
- All patients will have ocular involvement within 2 years of disease onset

- · Ocular manifestations
 - Ptosis, uni- or bilateral is very common and may occur while patients reading, or during long period of driving


Ptosis

- · Ocular manifestations
 - Diplopia: Extraocular muscle weakness may also present asymmetrically

- Bulbar involvements
 - Difficulty chewing, speaking, or swallowing: initial symptoms in 17% of patients
 - Fatigability and weakness during mastication
 - Unable to keep jaw closed after chewing
 - Slurred and nasal speech

- Limb muscles weakness:
 - Initial symptoms in fewer than 10%
 - Upper extremities weakness is more common than lower extremities, asymmetrical
 - Involve proximal muscles than distal
 - Involve neck muscles: neck flexion weaker than neck extension

- Respiratory insufficiency
 - The initial presentation is rare
 - Occurring precipitously in a patient with recent worsening of symptoms

Myasthenia Gravis:

- Precipitating events
 - Systemic illness
 - Viral upper respiratory tract infection
 - Receiving general anesthesia
 - Receiving neuromuscular blocking agents
 - Pregnancy, menstrual cycle
 - Extreme heat
 - Stress

Medications induce or exacerbate MG

- Definite association
 - Penicillamine, corticosteroids
- Probable association
 - Anticonvulsants (phenytoin);
 - Anti-infectives (aminiglycosides, ciprofloxacin);
 - Beta-adrenergic receptor-blocking drugs;
 - Lithium carbonate;
 - Procainamide HCl

Medications induce or exacerbate MG

- Possible association
 - Anticholinergic drugs (artane);
 - Anti-infectives (ampicillin, imipenem, erythromycin, pyrantel);
 - Cardiovascular drugs (propafenone HCI, verapamil);
 - Cholroquine phosphate;
 - Neuromuscular-blocking drugs (vecuronium, succinylcholine);
 - Ocular drugs (proparacaine HCl, tropicamide);
 - Miscellaneous drugs (acetazolamide, carnitine, interferon alfa, trandermal nicotine)

Archives of Internal Med 1997

MG: Classification

Osserman Classification

Grade I: involve focal disease (restricted to ocular muscle)

Grade II: generalized disease

IIa: mild

IIb: moderate

Grade III: severe generalized disease

Grade IV: a crisis with life-threatening impairment of respiration

MG: Classification

 MG Foundation of America Clinical Classification

Grade I: Any ocular muscle weakness

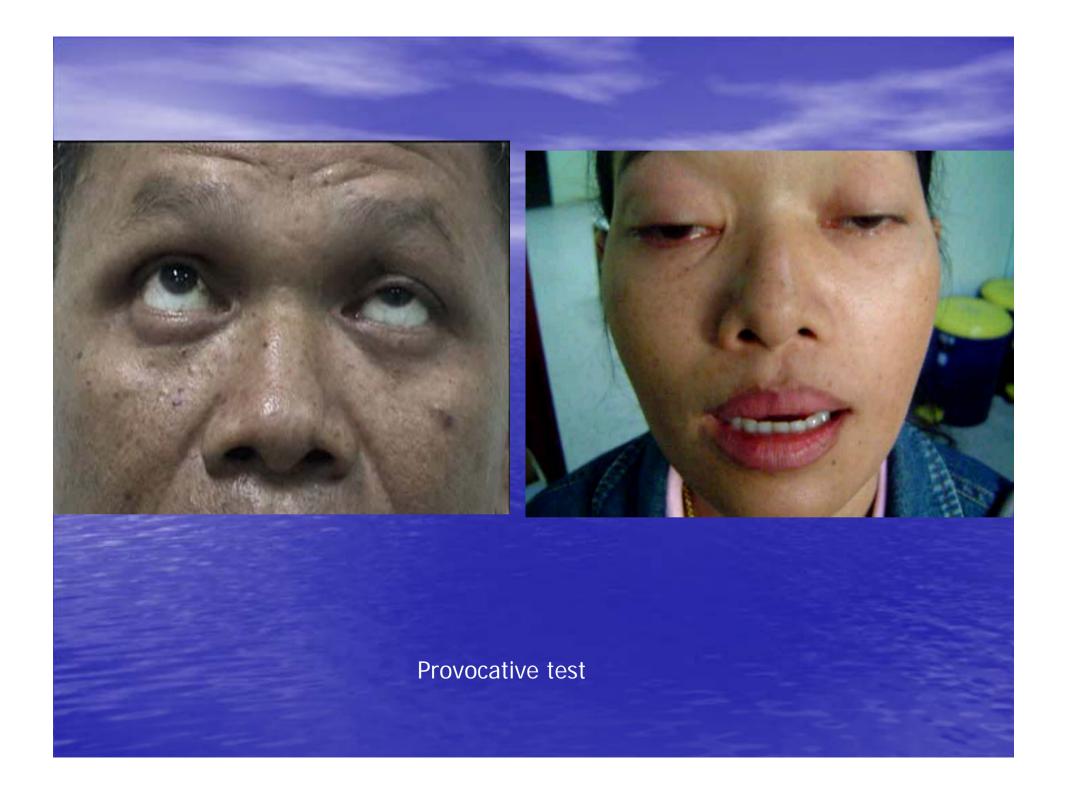
Grade II: Mild weakness affecting other than ocular muscles

IIa: limb and/or axial weakness; less oropharyngeal involvement

IIb: oropharyngeal and/or respiratory weakness

Grade III: Moderate weakness affecting other than ocular muscles (a,b)

Grade IV: Severe weakness affecting other than ocular muscles (a,b)


Grade V: Defined by tracheal intubation

- · Clinical course
 - Most progress if no treatment
 - -66%: maximum weakness during the first year
 - Spontaneous improvement occurs early in the course
 - Ocular type
 - 66% develop generalized disease in one year
 - 14% not progress after 2 years

- · Clinical course
 - Active stage (5-7 y): fluctuation and progression for several years: thymectomy benefit
 - Inactive stage (10 y): fluctuation while intercurrent illness or other identifiable factors (drugs, pregnancy): thymectomy no benefit
 - Burnt-out stage: after 15-20 years; fixed weakness with atrophic muscles

- Clinical manifestations: chronic intermittent muscle weakness; fatigability
- Provocative test:
 - Physiologic:
 - Look up for several minutes; counting aloud to 100; repetitively testing the proximal muscles
 - Pharmacologic:
 - Curare test: to demonstrate generalized MG (Neurologic clinics 1994)

· Pharmacological tests

- Tensilon test:
 - Using edrophonium chloride: short acting acetylcholinesterase inhibitor
 - 10 mg of edrophonium (0.15-0.2 mg/kg) used
 - A small test dose (2 mg) iv; after 1 min. no improvement and side effect, the remainder given slowly
 - The effect of edrophonium: in 30 sec. and last fewer than 10 min.

- Tensilon test:
 - Having false positive (LEMS, MND, MS, tumor, DM cranial neuropathy, mitochondrial myopathy) and false negative
 - Side effects: N/V, tearing, salivation, muscle fasciculation, abdominal cramp, bronchospasm, bradycardia, cardiac arrest
 - Cardiac monitoring
 - Atropine available: 0.6 mg IV

- Neostigmine test
 - Longer acting
 - -1.5 mg IM or 0.5 mg IV
 - Action begins in 15-30 mins and lasts up to 3 hours

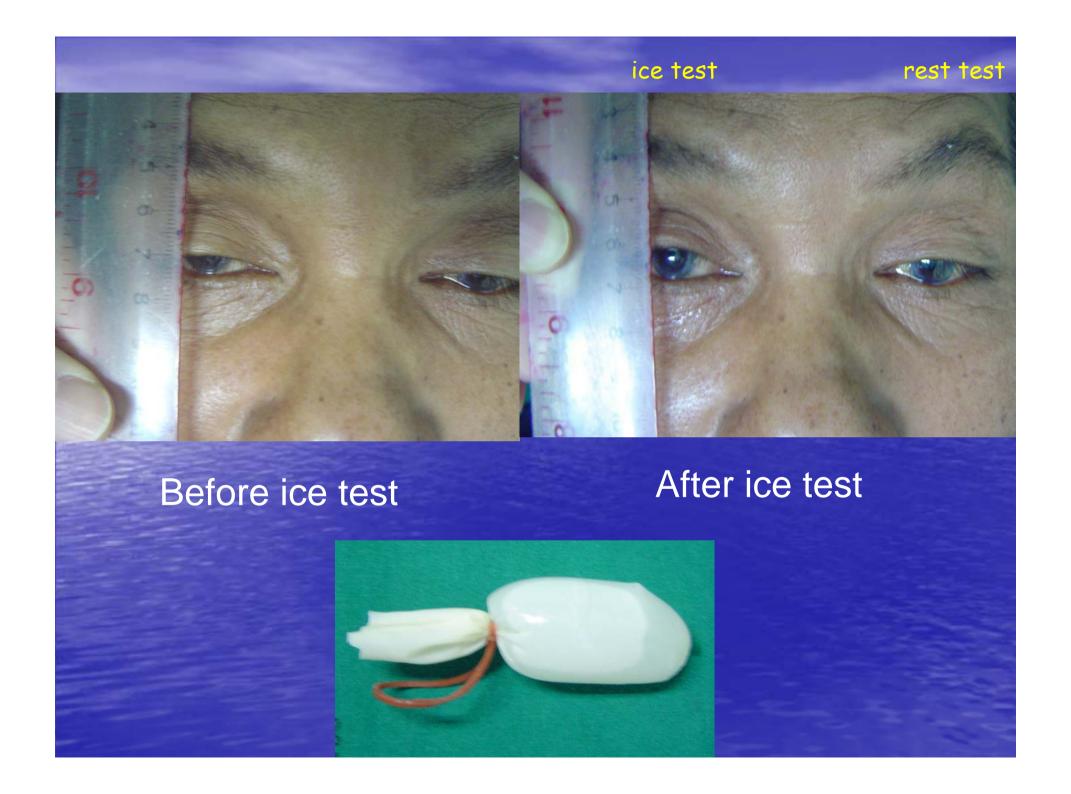
· Electrophysiological tests

- Repetitive nerve stimulation
 - 3 Hz is used for 60 sec.
 - A greater than 15% decrement of the amplitude of CMAP is considered positive
 - The yield of the test increases if proximal nerves are stimulated
 - May be abnormal in ALS, peripheral neuropathy, radiculopathy, MS

- SFEMG
 - Signals are recorded only from muscle fibers close to the recording surface of the needle electrode
 - Measure the relative firing (action potentials) of adjacent muscle fibers from the same motor unit during voluntary activity
 - The variation (time) in firing between these firing is called jitter (µsec)

- · SFEMG
 - Normal jitter ranges from 10-50 µsec
 - Increased jitter is seen in MG (100 µsec or greater)
 - Neuromuscular block occurs as end-plate potentials fail to reach adequate threshold to generate action potential
 - Time for end-plate potential to reach the threshold for action potential generation is longer

- SFEMG
 - Most sensitive
 - Difficult to perform
 - Need experience of the EMGer


- SFEMG
 - May be abnormal (F+) in neuropathies, mitochondrial myopathies, nerve injury, anterior horn cell disorders
 - May have false negatives in mild affected, or on immunosuppressive treatment

· Immunological tests

- · Antibody to acetylcholine receptor
 - Present in almost all patients with thymoma
 - Absent in ocular type
 - Absent in 20% of generalized MG

- Sleep test and rest test
 - Rest test for ocular (ptosis) type (AAO 2002)

- · Ice test
 - Muscles in MG function better in a lower temperature
 - Decreased acetylcholinesterase activity
 - Increased depolarizing effect of acetylcholine at motor endplates
 - Applying ice pack on the eyelid during closing for 2 mins.
 - Positive: lid fissure increases by 2 mm or more from baseline (Curr Opin Neurol 2001)

Ocular MG

- Tensilon test
- RNS (EOM)
- AchR-Ab:
- SFEMG (gold standard) (orbicularis oculi and frontalis)

• Sleep test simple and safe but takes time (30 mins.) and place

Rest test

50% no F+ (AAO 2000)

Ice test for ptosis:

95% no F+(Curr Opin Neurol 2001)

Sensitive

86% (F +) (side effect)

48% (F+) (invasive)

45-65% (rare F +) (expensive)

95% (F +) (pain)

Generalized MG

- Tensilon test
- · RNS
- · AchR-Ab:
- SFEMG

Sensitive

95

higher than in ocular MG (F+)

90% (rare F+)

100% (F+)

Myasthenia Gravis: Differential Diagnosis

- From generalized MG
 - ALS: Asymmetric muscle weakness and atrophy
 - Other NMJ disorders
 - · Lambert Eaton myasthenic syndrome
 - · Congenital myasthenic syndrome
 - · Neurotoxins
 - Botulism: Generalized limb weakness
 - Venoms: snakes, scorpions, spiders
 - Inflammatory demyelinating diseases
 - GBS: ascending limb weakness
 - Miller Fisher syndrome
 - Chronic
 - Inflammatory muscle disorders: Painful proximal symmetric limb weakness; no ocular involvement
 - Periodic paralysis: Intermittent generalized muscle weakness; no ocular involvement

Myasthenia Gravis: Differential Diagnosis

- From Bulbar Myasthenia
 - Brainstem stroke
 - Pseudobulbar palsy
- From Ocular Myasthenia
 - MS: UMN; bilateral internuclear ophthalmoplegia
 - Mitochondrial cytopathy (chronic progressive external ophthalmoplegia)
 - Oculopharyngeal muscular dystrophy
 - Thyroid ophthalmopathy

Myasthenia Gravis

- · Management
 - Diagnosis
 - Searching for associated diseases
 - Treatments
 - Avoiding and treating precipitating factors

Myasthenia Gravis:

- Associated diseases
 - Thymoma
 - Nonthymus neoplasm in 3%
 - -DM in 7%
 - Thyroid disease in 6%
 - Rheumatoid arthritis in fewer than 2%
 - Pernicious anemia, pancytopenia,
 thrombocytopenia and SLE in fewer than 1%
 - Polymyositis, dermatomyositis, psoriasis, scleroderma (BJA 2002)

Recommended laboratory tests or procedures

Magnetic resonance imaging or computed tomography of mediastinum Tests for lupus erythematosus: antinuclear antibody, rheumatoid factor, antithyroid antibodies

Thyroid-function tests

Tuberculin test

Chest radiography

Fasting blood glucose measurement

Pulmonary-function tests

Bone densitometry in older patients

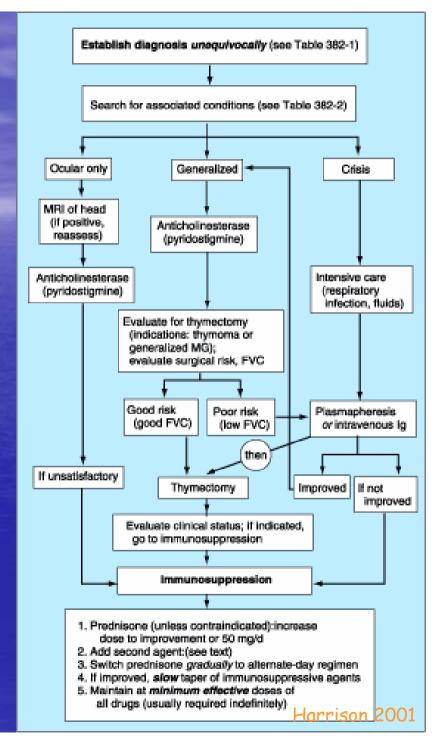
- The goal is to achieve remission
 - Symptoms free and taking no medication
 - By increased neuromuscular transmission
 - Reduce autoimmunity JOAO 2004
- Others: having a normal quality of life even if some signs remaining and cholinesterase inhibitors taking

Neurologic clinics 1994

- No single treatment is ideal for all patients
 - Each patient needs an individual plan
 - Treatment may have to be changed time to time
- Obtain the best response while keeping the risk and side effects as low as possible

Ocular MG

15% never spread out (Neurologic clinics 1994)
Spontaneous remission (JOAO 2004)
Good response to pyridostigmine


If spread out, in 2 y - thymectomy

If not response to pyridostigmine Add prednisolone: 10-30 mg/d for 2-3 months or incrementing dose; after maximum benefit slow tapering

If not effective, getting along with dysfunction; maneuvers and simple mechanical devices used

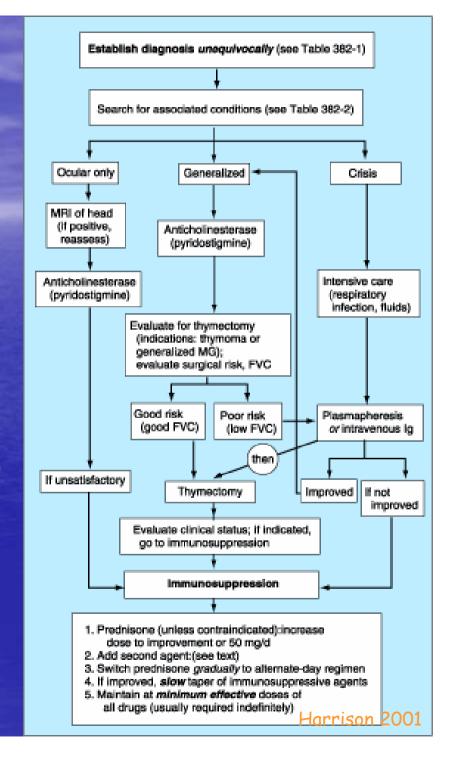
Or high-dose daily prednisolone <u>+</u> azathioprine or even thymectomy

If ptosis is fixed; surgical shortening of the eyelid to be considered (JOAO 2004; Neurologic clinics 1994)

Generalized MG

No bulbar involvement: remission

Thymectomy: Indications


- Thymoma
- Those are medically stable and aged

60 years or younger (puberty)
(Neurologic clinics 1994; NEJM 1994)

35% have clinical remission; 50%: improvement (Neurologic clinics 1994; NEJM 1994)

Clinical improvement in 6-12 m. after (JOAO 2004)

1-2 years after surgery, immunosuppressive therapy to be considered if functional limitations (Neurologic clinics 1994)

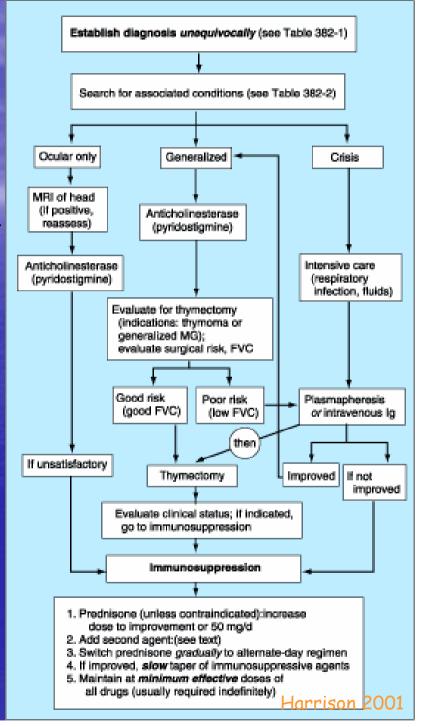
- Generalized MG with onset in childhood
 - More benign than in adult; less associated with thymoma, and remit spontaneously
 - ChE inhibitors only apply otherwise disabling signs exist, steroid will be recommended
 - Thymectomy if not respond to prednisolone

- Generalized MG with late-life onset
 - Less likely to improve after thymectomy
 - Surgery carries greater risk
 - Treatment with ChE inhibitors
 - Severe cases worth to use prednisolone and azathioprine

Myasthenic crisis

Sudden worsening of respiratory function <u>+</u> profound muscle weakness

- Negative inspiratory force of less than -20 cmH₂O
 - Tidal volume of less than 4mL/kg
- Force vital capacity < 15 mL/kg (normal 50-60 in female, 70 in male)

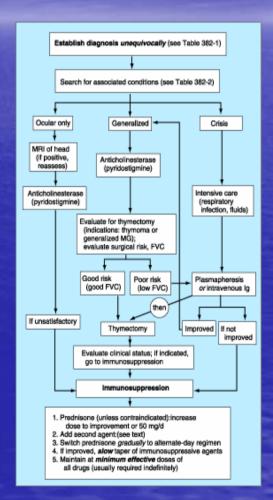

Neurologic emergency

Causes: concurrent infection, medications, drug withdrawal (JOAO 2004)

DDx from cholinergic crisis: clinical and tensilon test

Management

- -Stop every medications
- -Assisted ventilation
- -Treating ppf.
- -If not improve
- -IVIg or plasmapheresis (JOAO 2004)


- · Acetylcholinesterase inhibitors
 - Symptomatic improvement for a period of time
 - Initial therapy
 - Onset in 30 mins.
 - Peak effect at 2 hrs.
 - Half life approximately 4 hrs.
 - Lower risks and side effects than others: abdominal cramping, n/v increased salivation, and diarrhea

- · Acetylcholinesterase inhibitors
 - Benefit most patients but incomplete after weeks or months treatment; require further therapeutic measures
 - No fixed dosage schedule suits all patients
 - The need for ChE inhibitors varies from day-to-day and during the same day
 - A sustained-release preparation used only at bedtime

- · Acetylcholinesterase inhibitors
 - Pyridostigmine bromide is used
 - Starting with 30 mg every 4 to 6 hours; titrated depending on clinical symptoms and patient tolerability
 - Cholinergic crisis if too much of this medication (max. Dose = 450 mg/d)
 - Lowest amount with maximum benefit
 - 30 minutes before eating for patients with oropharyngeal weakness

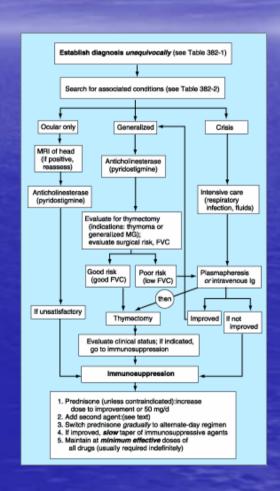
60 mg pyridostigmine = 15 mg neostigmine Dose im form (2 ml = 5 mg) = 1/30 of oral dose

- Immunosuppressive therapy
 - Indications
 - Not adequately controlled by anticholinesterase drugs and sufficently distressing to outweigh the risks of possible side effects of immunosuppressive drugs in ocular MG
 - Severe but not ready to have surgery
 - Not improve after thymectomy: may delay 3 y after surgery
 - Crisis not respond to plasma exchange or IVIg
 - In inactive and burnt-out stage

- Immunosuppressive therapy
 - Steroid: reduce AchR-Ab titer
 - · Most use
 - Typical dosage is 1 mg/kg daily as a single oral dose

- Immunosuppressive therapy
 - Steroid:
 - Start on a low dose and gradually titrate the dose up
 - 5 mg daily and increased by 5 mg every 4-7 days until clinical benefit achievement;
 - Remain on this dose for 2 mo.
 - Then, switch to alternate-day therapy
 - Once, the condition stable, taperd downward by 5 mg every month
 - Patients may relapse after tapered off
 - Most patients require long-term low-dose

- Immunosuppressive therapy
 - Steroid:
 - Have benefit in 6 to 8 weeks after initiation
 - Adverse effects: acne, bruising, cataracts, electrolyte imbalance, hirsutism, hyperglycemia, HT, avascular necrosis of the femoral head, obesity, osteoporosis, myopathy
 - High-dose daily prednisolone (60-80 mg; 1-1.5 mg/kg/d)
 - Rapid improvement
 - Institution in the first 2-3 weeks
 - Exacerbation of weakness managed by ChE-inhibitors or plasmapheresis


- · Immunosuppressive therapy
 - Azathioprine:
 - · Most use
 - To reduce adverse steroid effects
 - To whom steroids are contraindicated
 - Starting dose is 50 mg daily for the first week,
 then increased 50 mg every week
 - Titrating up to a maximum of 2-3 mg/kg/d in two or three divided doses

NEJM 1994; JOAO 2004

- Immunosuppressive therapy
 - Azathioprine:
 - Clinical benefit shown in 4-6 months or longer (max effect 12-24 mos.)
 - Once improvement; maintain as long as 4-6 mos.
 - Adverse effects: neutropenia, hepatotoxicity; increase risk of malignancy; idiosyncratic influenza-like reaction

NEJM 1994; JOAO 2004

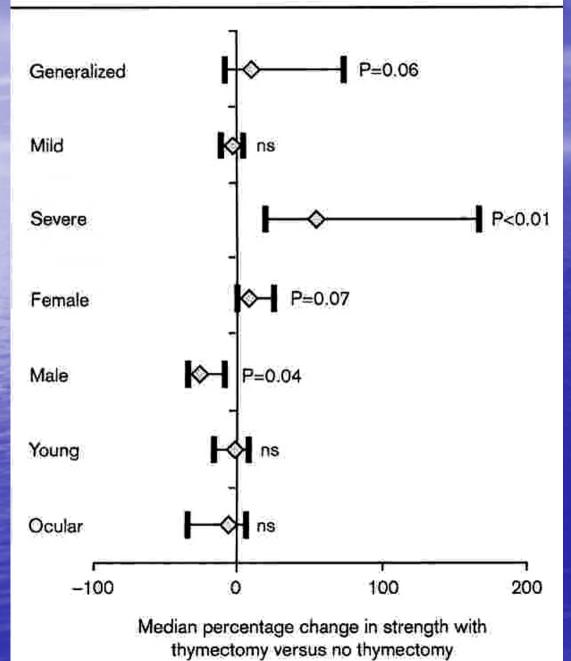
- Plasmapheresis (plasma exchange) and IVIg: Indications
 - Severe MG and exacerbations
 - Preparing for thymectomy or post operative period
 - Covering period before immunosuppressive therapy becomes fully active

- Plasmapheresis (plasma exchange): double filtration plasma exchange and immunoadsorption plasmaphoresis
 - Undergoing a 2-week course of 5-6
 exchanges (1 plasma volume = 40-50 ml/kg;
 2-3 liters each)
 - Effective but transient in its response:
 Improvement in the third exchange and lasts 6-8 weeks
 - To remove the circulating immune complexes and AchR-Ab

- · Plasmapheresis (plasma exchange):
 - Limitation: too small or fragile venous access
 - Complications (catheters): pneumothorax,
 bleeding, sepsis,
 - Adverse effects: hypotension, hypercoagulation, hypoalbuminemia, hypocalcemia, pulmonary embolism, arrhythmia, (frequent exchanges) anemia, low platelets

- IVIg therapy
 - Dose: 2 g/kg over 2-5 days
 - Clinical improvement in 1-2 weeks and lasts weeks to months

- IVIg: Side effect profile(some product contain IgA)
 - Allergic response: low grade fever, chills, myalgia
 - Diaphoresis, fluid overload, HT
 - Nausea, vomiting, rash, neutropenia
 - Headache, aseptic meningitis
 - Hyperviscosity: stroke, MI, ATN (most serious with compromized renal glomerular filtration; DM)


NEJM 1994; Neurologic clinics 1997; JOAO 2004

- · IVIg: Side effect profile
 - Anaphylactic reaction: with IgA deficiency
 - Transmission with (very low)
 - Hepatitis
 - · HIV

- Surgical intervention
 - Thymectomy
 - Acetylcholine-receptor antibody levels fall after thymectomy
 - Mechanisms
 - Eliminate a source of continued antigenic stimulation
 - Subside immune response
 - Correct a disturbance of immune regulation

- Surgical intervention
 - Thymectomy
 - · Not recommended in
 - Patients with purely ocular MG
 - Childhood, some do not recommended because of less severity than in adults and common remission spontaneously
 - Late-onset

Effect of thymectomy on strength in myasthenia gravis

Curr Opinion in Neurol 2001

- Future treatment
 - B-cell-directed approaches
 - B-cells produce pathogenic antibodies
 - T-cell-directed approaches
 - Pivotal role in autoimmune antibody response

Preparation for thymectomy

- No emergency performance of thymectomy
- · Preoperative preparation
 - Optimized strength and respiratory function
 - Avoided immunosuppressive agents (risk of infection)
 - If VC < 2 liters, plasmapheresis carried out

Preparation for thymectomy

- Postoperative management
 - May have weakness
 - · Pain
 - Myasthenic crisis: ChE-Is withdrawal
 - Cholinergic crisis: disease improvement
 - May test with tensilon
 - ChE inhibitors may be reduced for a few days after thymectomy
 - Postoperative ChE medication given IV at a dose of ¾ of the preoperative requirement

- Local and regional anaesthesia should be employed
- GA requires meticulous pre and perioperative care

- Preoperative consideration: major elective surgical procedures
 - Admitted 48 hrs prior to surgery
 - Assessment and monitoring of respiratory (FVC) and bulbar function
 - Adjustment of ChE inhibitors and steroid if indicated
 - Chest physiotherapy started
 - Plasma exchange or IvIg if necessary

- Preoperative consideration: major elective surgical procedures
 - Sedative medications save if no respiratory comprimise
 - Antimuscarinic agents helpful in reducing secretions
 - Steroid continued pre-operatively
 - Hydrocortisone administered on the day of surgery
 - ChE inhibitors withheld on the morning of surgery

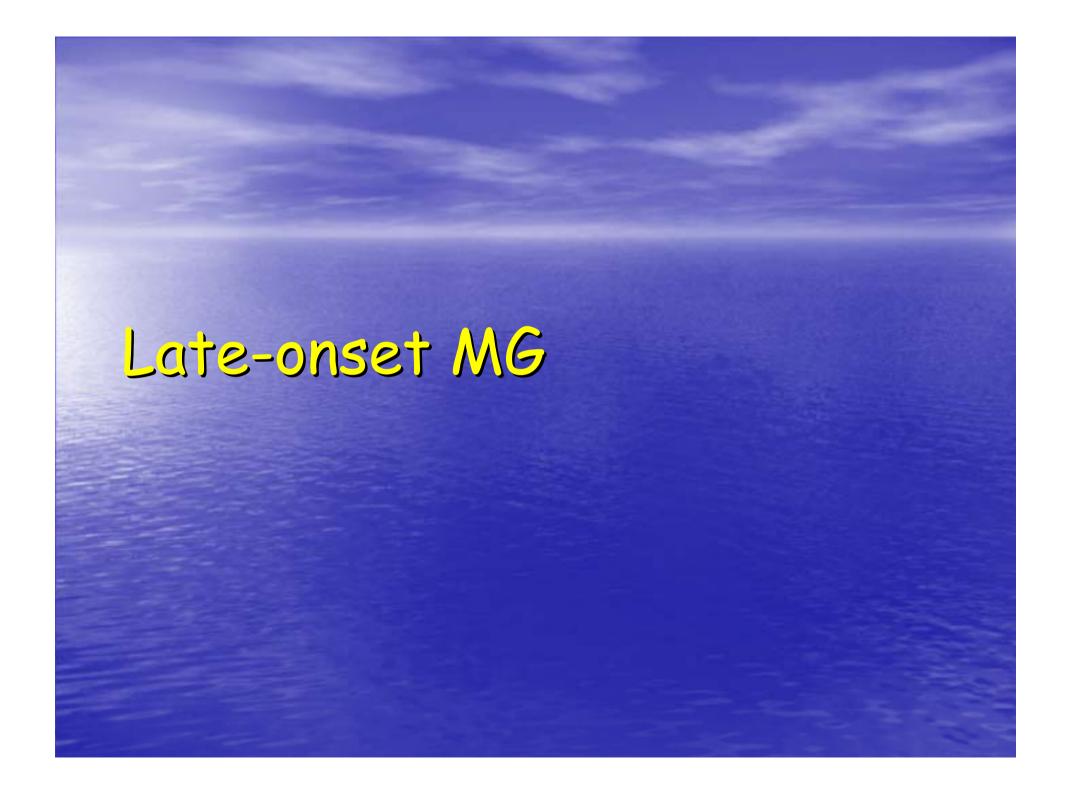
- Induction and maintenance of anaesthesia
 - Routine monitoring
 - Supplement with invasive blood pressure measurement
 - Nasotracheal tube is prefered
 - Patients more sensitive to neuromuscular blocking agents

- Postoperative management
 - Nursed in a high dependency area and adequate analgesia provided: NSAID and parenteral opioids
 - ChE inhibitors restarted at a reduce dose in the immediate post-operative period and increasing if necessary

Seronegative MG

- Found in approximately 15% of patients with generalized MG
- Clinically indistinguishable from AchR-Ab-positive patients
- Be diagnosed using SFEMG
- 70% of SNMG patients have Ab to the muscle-specific receptor tyrosine kinase (MuSK)

Thymoma-associated MG


 Muscle antibodies predict the presence of thymoma

Sens. Spec.

-Ryanodine receptor Ab 70%

-Titin Ab 95%

-Both 70% 70%

Late-onset MG

- Onset after the age of 50
- · Male = female
- Most are nonthymoma
- More severe than early-onset MG
- Having circulating Ab to AchR but lower conc. than in early-onset MG
- Titin Ab associates with severity
- Difficulty in treatment

Late-onset MG

- Difficulty in treatment
 - Temporary response to ChE-inhibitors
 - Plasma exchange produces more complications
 - Thymectomy gives poorer results
 - Steroids give many complications
 - Treatment has to be tailored

MG and pregnancy

- Pregnancy is associated with physiologic immunosuppression: depress leukocyte function
- Pregnancy aggravates MG
- So, clinical course unpredictable: rule of three
- One pregnancy not predict the course in subsequent pregnancies
- Exacerbation occur equally in all trimesters
- Therapeutic termination not demonstrate a consistent benefit in cases of first trimester exacerbation

MG and pregnancy

- Use minimual dosage of drugs
- · ChE-inhibitors: in creased uterine contraction
- Avoid other immunosuppressive drugs except steroid
- Normal delivery done
- No problems in breast feeding
- Transient neonatal myasthenia:
 - Found by 9-30%
 - Good response to ChE-inhibitors
 - Complete recovery in 2-4 mo

Myasthenic crisis

- · Rarely at the initial presentation
- Known MG may reach a crisis
- Defined as sudden worsening of respiratory function and/or profound muscle weakness
- Being a neurologic emergency
- Causes: concurrent infection, medications, drug withdrawal

Myasthenic crisis

- DDx from cholinergic crisis
 - Abdominal pain, diarrhea, hypersecretion, pinpoint pupil
 - Negative or worse by tensilon test
 - · Hold ChE-Is
 - Atropine 2 mg/hr
 - Tensilon test to consider the need of ChE-Is

Myasthenic crisis

- Management
 - Stop every medications
 - Assisted ventilation
 - Respiratory support required if
 - Negative inspiratory force of less than -20 cm H₂O
 - Tidal volume of less than 4mL/kg
 - Force vital capacity < 15 mL/kg (normal 50-60 [f], 70 [m])
 - Treating ppf.
 - Tensilon test to estimate ChE-Is requirement
 - If not improve
 - IVIg or plasmapheresis

Condition	SYMPTOMS AND CHARACTERISTICS	Соммент
Congenital myasthenic syndromes	Rare; early onset; not auto- immune disorders	Sophisticated electrophysiologic and immuno- cytochemical tests required for diagnosis
Drug-induced myasthenia		
Penicillamine	Triggers autoimmune myas- thenia	Recovery within weeks after drug withdrawal
Curare, procainamide, quinines, aminoglycosides	Weakness in normal persons; exacerbation of myasthenia	Recovery after drug withdrawal
Lambert-Eaton syndrome	Weakness; fatigue; areflexia; 60 percent of cases associ- ated with oat-cell cancer	Incremental response on repetitive nerve stimu- lation; antibody to calcium channels present
Hyperthyroidism	Exacerbation of myasthenia; generalized weakness	Thyroid function abnormal
Graves' disease	Diplopia; exophthalmos	Thyroid-stimulating immunoglobulin present
Botulism	Generalized weakness; oph- thalmoplegia	Incremental response on repetitive nerve stimu- lation; pupils are dilated
Progressive external ophthalmo- plegia	Ptosis; diplopia; generalized weakness in some cases	Mitochondrial abnormalities
Intracranial mass compressing cranial nerves	Ophthalmoplegia; cranial- nerve weakness	Abnormalities on computed tomography or magnetic resonance imaging

Differential diagnosis of myasthenia gravis Generalised myasthenia Other neuromuscular junction disorders: Lambert-Eaton myastheric syndrome Congenital myasthenic syndromes **Neurotoxins Botulism** Venoms (snakes, scorpions, spiders) Idiopathic inflammatory demyelinating polyradiculoneuropathies Acute (Guillain Barré)-motor type Miller Fisher syndrome Chronic Many myopathies (ichopathic inflammatory, metabolic, dystrophies [rarely]) **Bulbar myasthenia** Brain stem stroke Motor-neurone disease (pseudobulbar palsy) Ocular myasthenia Mitochondrial cytopathy (chronic progressive external ophthalmoplegia) Oculopharyngeal muscular dystrophy Thyroid ophthalmopathy Other causes of ptosis eg, contact-lens syndrome Lancet 2001 Brain-stem lesions

Myasthenia Gravis: Etiology

- Immunopathogenesis
 - MG is due to antibody-mediated processes
 - · Ab is present
 - Ab interacts with the target antigen, acetylcholine receptor
 - Passive transfer reproduces disease feature
 - Immunization with the antigen produces a model disease
 - Reduction of antibody levels ameliorates the disease

Associated disorders

Disorders of the thymus: thymoma, hyperplasia

Other autoimmune disorders: thyroiditis, Graves' disease, rheumatoid arthritis, lupus erythematosus, skin disorders, family history of autoimmune disorder

Disorders or circumstances that may exacerbate myasthenia gravis: hyperthyroidism or hypothyroidism, occult infection, medical treatment for other conditions (aminoglycoside antibiotics, quinine, antiarrhythmic agents)

Disorders that may interfere with therapy: tuberculosis, diabetes, peptic ulcer, gastrointestinal bleeding, renal disease, hypertension, asthma, osteoporosis

Myasthenia Gravis: Investigation

- For associated diseases
 - Autoimmune thyroiditis
 - Grave's disease
 - SLE
 - -CXR
 - CT chest scan: may miss small thymoma nodules
- Rule out genetic MG, Lambert-Eaton myasthenic syndrome

- · Ocular MG
 - Good response to pyridostigmine
 - Starting with 30 mg every 4 to 6 hours
 - Titrated depending on clinical symptoms and patient tolerability
 - Adverse effects: abdominal cramping, increased salivation, nausea and diarrhea
 - Lowest amount, maximum benefit
 - Usually spontaneous remission

- · Ocular MG
 - -If spread out, will occur in 1-2 years after onset
 - -So, closed follow up in the first 2 years is necessary to detect weakness early thymectomy is recommended

- Immunosuppressive therapy
 - Cyclosporine
 - Inhibits T-cell activation
 - For failure to respond to combination therapy with prednisolone and azathioprine or intolerability of azathioprine
 - Starting dose: 25 mg twice daily
 - Titrating up to 3-6 mg/kg/d

- Immunosuppressive therapy
 - Cyclosporine
 - Combination therapy is more efficacious; reduced dosage and fewer adverse effects
 - Time to onset of effect: 2-12 wk
 - Time to maximal effect: 3-6 mo
 - Adverse effects: nephrotoxicity, HT

- Immunosuppressive therapy
 - Cyclophosphamide
 - Used only others failed or not tolerated
 - Starting dose: 25 mg daily
 - Gradually increased up to 2-5 mg/kg/d
 - Adverse effect: hemorrhagic cystitis

- Immunosuppressive therapy
 - Mycophenolate Mofetil
 - Novel agent, benefit in transplantation medicine
 - Starting at 250 mg twice daily
 - Standard daily dosage: 1-2 g.
 - CBC checked every week for the first month; every two weeks for the next 6-8 weeks; and monthly thereafter

Drug	USUAL ADULT Dose	TIME TO ONSET OF EFFECT	Time to Maximal Effect	Variables to Monitor Drug Effects
Prednisone	15-20 mg/day gradu- ually increasing to 60 mg/day and gradually changed to every other day	2-3 wk	3-6 mo	Weight Blood pressure Blood glucose Electrolytes Ophthalmic changes Bone density 24-hr urinary calcium
Azathioprine (Imuran)	2-3 mg/kg/day (total dose, 100-250 mg/day)	3–12 mo	1-2 yr	White-cell count (<3500/mm³)* Differential count (<1000 lym- phocytes/mm³)* Mean corpuscular volume (>100 μm³)* Platelets Liver function
Cyclosporine (Sandimmune)	5 mg/kg/day given in 2 divided doses (total dose, 125– 200 mg twice daily)	2–12 wk	3–6 mo	Blood pressure Serum creatinine Blood urea nitrogen Trough plasma cyclosporine level

^{*}Values in parentheses are desirable levels.

- · Generalized MG with onset in adult life
 - Mild: no symptoms related to breathing, coughing and swallowing
 - · ChE inhibitors
 - If optimal dosage, thymectomy to be considered
 - Or additional prednisolone, if no remission in 1 year - thymectomy
 - Balbar involvement
 - · ChE inhibitors + high dose prednisolone
 - Thymectomy to be considered

- · Generalized MG
 - Combination with pyridostigmine and prednisolone
 - Starting with low dose
 - Starting with high dose: 1-1.5 mg/kg/d
 - Patients be worse
 - Should be admitted for 2 weeks
 - Clinical benefit in 1-2 months afterward
 - Adverse effects: acne, bruising, cataracts, electrolyte imbalance, hirsutism, hyperglycemia, HT, avascular necrosis of the femoral head, obesity, osteoporosis, myopathy

- Generalized MG with onset in childhood
 - Distiquishing acquired autoimmune MG from genetic MG - not respond to immunotherapy
 - Seronegative in acquired MG possible
 - Positive treatment response with plasma exchange, IvIg is autoimmune disease; but negative not excluded
 - More benign than in adult; less associated with thymoma, and remit spontaneously
 - ChE inhibitors only apply otherwise disabling signs exist, steroid will be recommended
 - Thymectomy if not respond to prednisolone

- · Generalized MG
 - To reduce adverse steroid effects
 - Add with or switch to azathioprine

- · Ocular MG
 - If not good response to pyridostigmine: not lead to normal social and working life
 - Add low dose prednisolone: 10-30 mg/d for 2-3 months or incrementing dose; after maximum benefit slow tapering
 - If not effective, getting along with dysfunction; maneuvers and simple mechanical devices used
 - Or high-dose daily prednisolone with/without azathioprine or even thymectomy
 - If ptosis is fixed; surgical shortening of the eyelid to be considered

Myasthenia Gravis: Pathophysiology

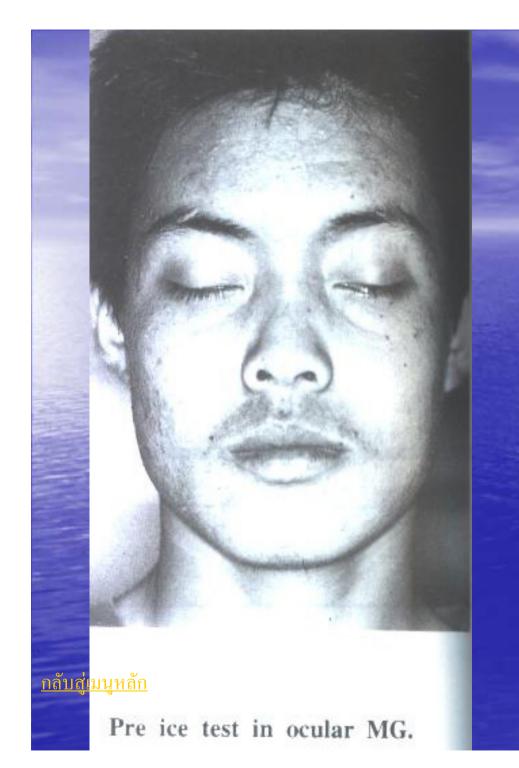
Myasthenia Gravis: Pathophysiology

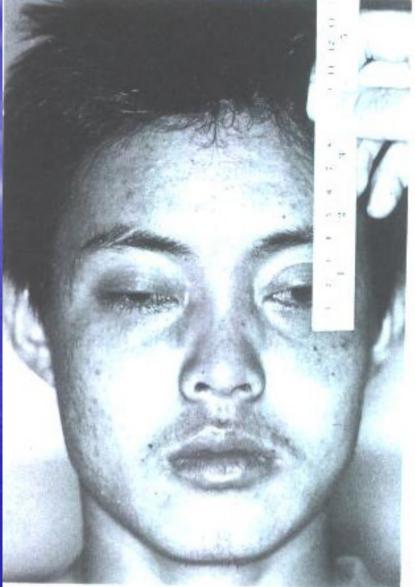
- Serum concentration of acetylcholinereceptor antibody not correlate with the clinical severity
- Degree of reduction of acetylcholine receptors correlate with the severity

Myasthenia Gravis: Pathophysiology

- · Immunopathogenesis
 - Antibody negative MG
 - Found in 10-20%
 - · Causes:
 - Too low an affinity for detection in the soluble assay system
 - Antibody may be directed at epitopes not present in the soluble acetylcholine-receptor extract

Medications induce or exacerbate MG


- Anti-infective Agents
 - Aminoglycosides
 - Kanamycin sulfate
 - Ampicillin sodium
 - Erythromycin
 - Ciprofloxacin HCL
 - Imipenem
 - Pyrantel


Medications induce or exacerbate MG

- Cardiovascular Agents
 - Propanolol HCL
 - Acebutolol HCL
 - Oxyprenolol HCL
 - Practolol
 - Timolol maleate (β blocker)
 - Quinidine (anti-arrhythmic)
 - Procainamide HCL (anti-arrhythmic)
 - Propafenone HCL (anti-arrhythmic)

Medications induce or exacerbate MG

- Other Agents
 - Chloroquine
 - Corticosteroids
 - D-penicillamine
 - Interferon α
 - Mydriatics
 - Phenytoin sodium
 - Trihexyphenidyl HCL (artane)
 - Trimethadione
 - Verapamil HCL

J med Assoc Thai 2001

Post ice test positive in ocular MG.